アーク発生防止回路

 

本明細書では、電力アダプター(118)がクライアント・デバイス(102)に接続/切断されるときのアーク発生を防止するかまたは大幅に軽減するように構成されたアーク発生防止回路(120、310)について記載する。アーク発生防止回路(120)は、電力アダプターのコネクター(304)のアダプター・インターフェース(306)への接続が完全に確立されていないときに供給される電力を制限する。更に、アーク発生防止回路は、接続が行われたときを検出し、クライアント・デバイスの動作のための電力を供給するために制限を解除する。一手法では、アーク発生防止回路は、それぞれ、検出モードおよび動作モードに関連する2つの異なる経路およびコンポーネントを含む。検出モードでは、電源が抑制され、接続が確立したか否か判定するために電流パルスを送ることができる。電流が検出された場合、動作モードに切り替えが行われ、通常のデバイス動作のための電力が供給される。
【選択図】図3

 

 

[0001] 移動体計算デバイスは、移動体の設定においてユーザーに利用可能にすることができる機能を増加させるために発展してきた。例えば、ユーザーは、移動体電話機、タブレット・コンピューター、または他の移動体計算デバイスと対話処理して、電子メールをチェックすること、ウェブをサーフすること、文章を作成すること、アプリケーションと対話処理すること等を行うことができる。移動体計算デバイスの開発者に直面する課題の1つは、効率的な電力管理およびバッテリーの長寿命化である。例えば、多くの移動体計算デバイスの小さなフォーム・ファクターは、電力接続を比較的小さなサイズに抑える設計を強制する可能性がある。したがって、開発者は、更に、このような小さな形状の電力接続と共に使用されるように設計されるアダプターが安全であり、適正な量の電力をデバイスに供給することを保証することを懸念する場合もある。1つの心配は、外部電力アダプター・デバイスが移動体計算デバイスに接続されるときに起こるおそれがあるアーク発生(arcing)である。
[0002] 本明細書では、電力アダプターをクライアント・デバイスに接続する/から切断するときのアーク発生を防止するまたは実質的に軽減するように構成されるアーク発生防止回路について説明する。1つ以上の実施態様では、コネクターのアダプター・インターフェースへの接続が完全に確立されていないときに、電源からクライアント・デバイスに電力アダプターを介して供給される電力を制限するために、 アーク発生防止回路を提供する。更に、アーク発生防止回路は、接続が行われたときを検出し、クライアント・デバイスの動作のために適した電力レベルを供給するために制限を解除するように構成される。1つの手法では、アーク発生防止回路は、検出モードおよび動作モードにそれぞれ関連付けられた2つの異なる経路およびコンポーネントを含む。検出モードでは、電源は抑制され、接続が確立されたか否か判定するために電流パルスを送ることができる。電流が検出された場合、動作モードに切り替えが行われ、通常のデバイス動作のための電力が供給される。このように、デバイスは、コネクターの接続が完全に確立されるまでは、アーク発生を維持するのに十分な電力を受けず、したがってアーク発生を軽減することができる。
[0003] この摘要は、詳細な説明において以下で更に説明する概念から選択したものを、簡略化した形態で紹介するために設けられている。この摘要は、特許請求する主題の主要な特徴や必須の特徴を特定することを意図するのではなく、特許請求する主題の範囲を判断するときに補助として使用されることを意図するのでもない。
[0004] 添付図面を参照しながら、詳細な説明を記載する。図では、参照番号の最も左側にある数字(1つまたは複数)が、その参照番号が最初に現れる図を識別する。説明および図における異なる実例において同じ参照番号が使用される場合、同様のまたは同一の品目を示すことができる。
図1は、1つ以上の実施態様による環境の図である。 図2は、1つ以上の実施態様によるクライアント・デバイスの一例の図である。 図3は、1つ以上の実施態様による電力アダプターの一例の詳細を示す線図である。 図4は、電力アダプターがモード間で切り替わる手順例を示す流れ図である。 図5は、アーク発生防止回路の一例を示す線図である。 図6は、アーク発生防止回路の他の例を示す線図である。 図7は、アーク発生防止回路の動作について手順例を示す流れ図である。 図8は、1つ以上の実施形態による計算システムおよびデバイスの一例を示す。
全体像
[0013] 本明細書では、電力アダプターがクライアント・デバイスに接続される/クライアント・デバイスから切断されるときのアーク発生を防止するまたは実質的に軽減するように構成されたアーク発生防止回路について説明する。アーク発生防止回路がないと、接続が確立されつつあるときに(または切断中に)コネクターとアダプター・インターフェースに跨がってアーク発生が起こるおそれがある。これは、コネクター・ピン/接点の寿命を縮めるおそれがあり、ある設定では危険を及ぼすおそれがあり、および/またはアーク発生を見た場合ユーザーを不快にするおそれがある。1つ以上の実施態様では、コネクターのアダプター・インターフェースへの接続が完全に確立されていないときに、電源からクライアントに電力アダプターを介して供給される電力を制限するために、 アーク発生防止回路を設ける。更に、接続が行われたときを検出し、クライアント・デバイスの動作に適した電力レベルを供給するために制限を解除するように構成される。1つの手法では、アーク発生防止回路は、検出モードおよび動作モードにそれぞれ関連付けられた2つの異なる経路およびコンポーネントを含む。検出モードでは、電源が抑制され、接続が確立されたか否か判定するために電流パルスを送ることができる。電流が検出された場合、動作モードへの切り替えが行われ、通常のデバイス動作のための電力が供給される。このように、デバイスは、コネクターの接続が完全に確立されるまで、アーク発生を維持するのに十分な電力を受けず、したがってアーク発生を軽減することができる。
[0014] 以下の論述では、本明細書において説明する技法を採用することができる動作環境例について最初に説明する。次に、この環境例およびその他の環境において実現することができる詳細および技法の例について説明する。したがって、この技法の実行は、この環境例に限定されるのではなく、更にこの環境例が本技法例の実行に限定されることもない。最後に、1つ以上の実施形態を実現するために採用することができるシステムおよびデバイスの例について説明する。
動作環境例
[0015] 図1は、本明細書において説明する技法を採用するように動作可能な実施態様例における環境100の図である。図示する環境100は、ネットワーク104を通じてサービス・プロバイダー106に通信可能に結合されているクライアント・デバイス102を含む。サービス・プロバイダー106は、種々のリソース108(例えば、コンテンツおよびサービス)をネットワーク104を通じてクライアント・デバイス102およびその他のクライアントに利用可能にするように構成することができる。一般に、サービス・プロバイダー106によってアクセス可能にされるリソース108は、通例1つ以上のプロバイダーによってネットワークを通じて利用可能にされるサービスおよび/またはコンテンツの任意の適した組み合わせを含むことができる。サービスのいくつかの例には、検索サービス、電子メール・サービス、インスタント・メッセージング・サービス、オンライン生産性スイート、およびリソースへのクライアントのアクセスを制御するための認証サービスが含まれるが、これらに限定されるのではない。コンテンツは、テキスト、マルチメディア・ストリーム、文書、アプリケーション・ファイル、写真、オーディオ/ビデオ・ファイル、アニメーション、画像、ウェブ・ページ、ウェブ・アプリケーション、デバイス・アプリケーション、ブラウザまたは他のクライアント・アプリケーションによる表示のためのコンテンツ等の種々の組み合わせを含むことができる。
[0016] クライアント・デバイス102およびサービス・プロバイダー106は、1つ以上の計算デバイスによって実現されてもよく、更に1つ以上のエンティティを表すのでもよい。計算デバイスは、種々の方法で構成することができる。例えば、計算デバイスは、デスクトップ・コンピューター、移動局、娯楽用アプライアンス、ディスプレイ・デバイスに通信可能に結合されたセット・トップ・ボックス、ワイヤレス・フォン、ゲーム・コンソールなどのように、ネットワークを通じて通信することができるコンピューターとして構成することもできる。つまり、計算デバイスは、相当なメモリーおよびプロセッサー・リソースを有する最大リソース・デバイス(例えば、パーソナル・コンピューター、ゲーム・コンソール)から、メモリーおよび/または処理リソースが限定された低リソース・デバイス(例えば、従前からのセット・トップ・ボックス、ハンドヘルド・ゲーム・コンソール)までの範囲に及ぶことができる。加えて、場合によっては1つの計算デバイスが示されるが、計算デバイスは、サービス・プロバイダー106によって利用される多数のサーバーというような、複数の異なるデバイスを表すこともできる。
[0017] 更に、クライアント・デバイス102は、オペレーティング・システム110を含むことが示されている。オペレーティング・システム110は、クライアント・デバイス102上で実行可能なアプリケーション112に対して基礎となるハードウェアの基礎となる機能を抽象化するように構成されている。例えば、オペレーティング・システム110は、この基礎となる機能を「どのように」実装するか知ることなく、アプリケーション112を書くことができるように、処理、メモリー、ネットワーク、および/または表示機能を抽象化することができる。アプリケーション112は、例えば、ディスプレイ・デバイスによってレンダリングおよび表示されるデーターをオペレーティング・システム110に供給することができ、オペレーティング・システム110は、このレンダリングがどのように実行されるか理解しない。加えて、計算デバイス102は、インターフェース116を介して、物理的にそして通信可能にアクセサリー・デバイス114に結合することもできる。種々のアクセサリー・デバイスおよびインターフェースの例に関する詳細については、以下で図2に関係付けて論ずる。
[0018] 本明細書において説明する技法によれば、クライアント・デバイス102は、アーク発生を防止するために、本明細書において説明するアーク発生防止回路120を含むまたは利用する電力アダプター118(ここでは、電源ユニット(PSU)とも呼ぶ)に接続可能であることも示されている。具体的には、アーク発生防止回路120は、クライアント・デバイス102が電源に電力アダプター118を介して接続されるときに、アーク発生防止回路120がないと起こるおそれがあるアーク発生を軽減するために、種々の方法で実現することができる。電力アダプター118は、クライアント・デバイス102に接続可能な外部電源ユニット、壁のコンセント、バッテリー、または他の電源というような適した電源を代表する。一手法では、アーク発生防止回路120は、クライアント・デバイスへの接続に先立ってアーク発生を制御するために、初期状態で電力を制限する検出モードを実施するように構成される。続いて、アーク発生防止回路120は、クライアント・デバイスの電力アダプター118への接続の検出に応答して「正常」動作のための動作モードへの切り替えを行わせることができる。電力アダプター118のクライアント・デバイス102からの切断時に、アーク発生防止回路120は、電力を制限した検出モードに逆戻りすることができる。アーク発生を防止するためにこれらのモード間で選択的に切り替える技法に関する詳細は、以下の図に関係付けて論ずる。
[0019] 図2は、インターフェース116を介してクライアント・デバイス102に接続可能なアクセサリー・デバイス114の一実証例を、全体的に200で示す。この例では、クライアント・デバイス102はタブレットまたはスレート・デバイスとして図示されている。アクセサリー・デバイス例114は、キーのQWERTY配列を有するキーボードとして構成されるが、他のキー配列も考えられる。更に、アクセサリー・デバイス114に対して、ゲーム・コントローラー、楽器を模擬する構成、電力アダプター等のような、他の従来とは異なる構成も考えられる。つまり、アクセサリー・デバイス114は、種々の異なる機能をサポートするために、種々の異なる構成を取ることができる。異なるアクセサリー・デバイスが、異なる時点において計算デバイスに接続されてもよい。
[0020] 既に説明したように、アクセサリー・デバイス114は、インターフェース116を介して、物理的にそして通信可能にクライアント・デバイス102に結合されており、この例では、インターフェース116は可撓性蝶番として構成される。この可撓性蝶番は、アクセサリー・デバイス114をクライアント・デバイス102に接続するおよび/または取り付けるのに適したインターフェース116の1つの実証例を表す。可撓性蝶番は、ピンによって支持される機械的回転とは異なり、蝶番を形成する材料の撓み(例えば、屈曲)によって、蝶番によって支持される回転運動が行われることから可撓性であるが、ピンによって支持される機械的回転の実施形態も考えられる。更に、この可撓性回転は、クライアント・デバイスに対するアクセサリー・デバイスの横移動のように、一方向における移動(例えば、図において垂直方向)を支持するが、クライアント・デバイスに対するアクセサリー・デバイスの横方向移動というような他の方向の移動を制限するように構成することもできる。これは、給電状態、印加状態等を変化させるために使用されるセンサーを位置合わせするためというように、クライアント・デバイス102に対するアクセサリー・デバイスの一貫性がある位置合わせ(consistent alignment)をサポートするために使用することもできる。
[0021] 可撓性蝶番は、1層以上のファブリックを使用して形成されてもよく、アクセサリー・デバイスをクライアント・デバイスに、そしてその逆に通信可能に結合する可撓性トレースとして形成される導体を含んでもよい。この通信は、例えば、キー押下の結果をクライアント・デバイスに伝える、電力をクライアント・デバイスから受ける、認証を実行する、補助電力を計算デバイスに供給する等のために使用することができる。可撓性蝶番または他の適したインターフェース116は、多数の異なるアクセサリー・デバイス114をサポートするために、種々の方法で構成することができる。一般に、インターフェース116は、種々の向き/構成への、クライアント・デバイス102に対するアクセサリー・デバイス114の移動をサポートする。例えば、キーボード・アクセサリーの例では、クライアント・デバイス102のディスプレイ・デバイスに向かって回転させ、こうすることによってカバーとして作用することができる。また、アクセサリーは、見る向きに合わせて、クライアント・デバイス102の背面にもたれて、例えば、ディスプレイ・デバイスの逆側に配置されたクライアント・デバイス102の裏筐体にもたれて配置されるように、回転させることもできる。他の例では、アクセサリーが表面に対して平面状に置かれるタイプ入力用配置(typing arrangement)をサポートすることもでき、クライアント・デバイス102は、例えば、計算デバイス102の裏面上に配置されたキックスタンドの使用によってというように、ディスプレイ・デバイス110を見ることができる角度に配置される。三脚型配列(tripod arrangement)、集会用配置(meeting arrangement)、プレゼンテーション用配置(presentation arrangement)等というような、他の実例も考えられる。
[0022] 動作環境例についての以上の論述を検討したので、これより以下の図および手順の例に関係付けて説明する検証プラットフォームに関する詳細について検討する。
アーク発生防止の詳細
[0023] この章では、1つ以上の実施態様によるアーク発生防止回路および技法の例の詳細について論ずる。以下の論述の一部では、図1および図2に関係付けて説明した動作環境例を参照する場合もある。
[0024] 具体的には、図3は、クライアント・デバイス102に接続可能な電力アダプターの一例118を、全体的に300で、更に詳細に示す。図示のように、電力アダプター118は、クライアント・デバイス102に、電源(power source)302への接続(例えば、電力レセプタクル、外部バッテリー等)を設ける。こうするために、電力アダプター118は、コネクター304を含むことができる。コネクター304は、アダプターとデバイスとの間における通信および電力交換を容易にするために、クライアント・デバイス102の対応するアダプター・インターフェース306に接続するように構成されている。また、電力アダプターは、電源302への接続を可能にするコンポーネントおよび/または他のコネクターも含むことができる。このように、コネクター304およびアダプター・インターフェース306の接続により、アダプターからデバイスに電力を供給するための電力結合、およびアダプターとデバイスとの間で通信を搬送するための通信結合の双方を設ける。
[0025] コネクター304およびアダプター・インターフェース306は、デバイスとアダプターとの間に適した接続を確立するために、種々の方法で構成することができる。一例としてそして限定ではなく、図3のコネクター例304は5本のピンを有し、アダプター・インターフェース306の5本の対応するピンとの接触によって接続を形成することが示されている。この構成では、接続の2本のピンを正電圧に使用することができ、他の2本のピンを電圧返流に使用することができ、接続の残りのピンは、アダプターとデバイスとの間で通信を伝えるために使用される単一ピン通信ライン/チャネルを確立することができる。種々の他の構成も考えられる。
[0026] 図示する例では、電力アダプター118は、更に、アーク発生防止回路120を含むことが示されている。アーク発生防止回路120は、電力アダプター118がクライアント・デバイス102に接続される/切断されるときのアーク発生を防止するか、または実質的に軽減するために、本明細書において説明する種々の方法で構成することができる。アーク発生防止回路120がないと、接続が確立されつつあるとき(または切断中)に、コネクター304とアダプター・インターフェース306とに跨がってアーク発生が起こるおそれがある。これは、コネクターのピン/接点の寿命を縮めるおそれがあり、ある設定では危害をおよぼすおそれがあり、および/またはユーザーがアーク発生を見た場合ユーザーを不快にするおそれがある。したがって、コネクター304のアダプター・インターフェースへの接続が完全に確立されていないときに、電源302からクライアント・デバイス102に電力アダプター118を介して供給される電力を制限するために、アーク発生防止回路120が設けられる。更に、アーク発生防止回路120は、接続が行われたときを検出し、クライアント・デバイス102の動作に適した電力レベルを供給するために制限を解除するように構成される。
[0027] 更に図示するように、クライアント・デバイス102は、電力管理のために種々の動作を実行するクライアント・デバイスの機能を代表する電力コントローラー308を含むことができる。これは、異なる電源の管理、電源間の切り替え、定められたおよび/または選択された電力管理方式の実施、バッテリー寿命の管理等を含むことができる。また、電力コントローラー308は、壁のコンセント、外部バッテリー、または他の外部電源というような、適した電源302によってデバイスに電力を供給するように構成された電力アダプター118との接続および通信を容易にすることもできる。電力コントローラー308は、ハードウェア、ソフトウェア、ファームウェア、および/またはその組み合わせで実現することもできる。一例としてそして限定ではなく、電力コントローラー308に関係付けて本明細書で説明する種々の機能を実現するように、マイクロコントローラーまたは他の適したハードウェア・ロジック・デバイスを構成することもできる。電力コントローラー308は、比較的少ない電力を使用して、ホスト計算デバイスの「主要な」処理システム(例えば、デバイスの1つ以上の中央処理ユニット)の動作とは独立して、および/またはオペレーティング・システムをブート/実行することなく、そして他のデバイス・コンポーネントおよびアプリケーションを使用することなく、動作することができる。言い換えると、電力コントローラー308は、処理システムや他のデバイス・コンポーネント(例えば、デバイス・メモリー、ネットワーク・インターフェース、ディスプレイ・デバイス等)を動作させる必要なくまたはこれらに電力を供給する必要なく、および/または計算デバイスを完全に始動(starting-up)または起動(waking-up)することなく、ある電力管理タスクを実行するために動作することができる。
[0028] 実施態様では、図3において表されるようなアーク発生防止回路310は、電力アダプター118のコンポーネントとしてアーク発生防止回路120を設けるのに加えて、またはその代わりに、クライアント・デバイス102に含ませてもよい。図示のように、アーク発生防止回路310は、アダプター・インターフェース306のコンポーネントとして実装されてもよい。あるいは、アーク発生防止回路310は、電力コントローラーのコンポーネントとして、単体デバイスとして実装されてもよく、またそうでなければ、クライアント・デバイス102と一体化されてもよい。この手法では、アーク発生防止回路310は、完全な接続が検出されない場合、アダプター・インターフェース306とコネクター304との接続間の電力を制限/抑制するように動作することができる。次いで、アーク発生防止回路310は、接続が行われたときを検出し、クライアント・デバイスの動作に適した電力レベルを可能にすることができる。こうするために、アーク発生防止回路310は、電力アダプターに、制限された電力の供給と、しかるべき状況における通常電力レベルの供給との間で切り替えさせるために、命令、通知、または他の適した指令(directive)を電力アダプター118に伝達することができる。注記すべきは、アーク発生防止回路310が、接続および/またはアーク発生軽減を検知するために限定して使用されるコネクター304の専用ピンを有することなく、またはこれらに頼ることなく動作できることである。代わりに、コネクター304は、変更なく使用することができ、以上で説明した例における5本のピンのように、他の通常機能のために使用されるピンが設けられる。
[0029] 更に例示するために、これよりある手順およびアーク発生防止回路の例についての論述について検討する。これらの手順の各々の態様は、ハードウェア、ファームウェア、ソフトウェア、またはその組み合わせで実現することができる。これらの手順は、1つ以上のデバイスによって実行される動作を指定する1組のブロックとして示され、それぞれのブロックによって動作を実行するために示される順序には必ずしも限定されない。以下の論述の一部では、図1の動作環境例100、ならびに図2および図3のデバイス例をそれぞれ参照する場合もある。
[0030] 図4は、アーク発生を防止するために異なるモード間で選択的に切り替える手順例400を示す。クライアント・デバイスに供給される電力を制限する検出モードで、 電源ユニットを始動させる(ブロック402)。次いで、電源ユニットのクライアント・デバイスのインターフェースへの接続を検出するために、監視を実行する(ブロック404)。例えば、電力アダプター118のアーク発生防止回路120は、デフォルトで検出モードで動作するように設定されてもよい。これは、電力アダプター118が最初に電源302に接続されるときに行うことができる。検出モードでは、アーク発生防止回路120は、アダプターのクライアント・デバイスへの接続が確立されつつあるときにアーク発生が起こらないように、制限電力出力を供給するように構成される。更に、アーク発生防止回路120は、クライアント・デバイス102への接続が確立されたときを判定するために監視するように構成されている。1つの手法では、アーク発生防止回路120は、監視を実施するために検出コンポーネントを含むことができる。これは、監視集積回路、マイクロコントローラー・デバイス、および/またはコネクター304とアダプター・インターフェース306との間の接続をチェックし、コネクター304が対応するクライアント・デバイス102に接続されたときおよび切断されたときを認識するのに適した他のハードウェアを含むことができる。一例としてそして限定ではなく、アーク発生防止回路120は、電力アダプターが接続されているか否かを示す、電気回路における変化を認識するように構成されてもよい。コネクターが接続されたときまたは切断されたときを認識するための他の技法も考えられ、計算デバイスの電力コントローラー308によって送られる通知または他のフィードバックを処理する、コネクターが接続/切断されると異なる状態に切り替えられる物理スイッチまたはボタンの作動を検出する、光センサーまたはIRセンサーのような、接続/切断を示す情報を提供するように構成された1つ以上のセンサーを使用する等が含まれるが、これらに限定されるのではない。
[0031] インターフェースへの接続の検出に応答して、クライアント・デバイスに電力を供給するために電源ユニットを動作モードで動作させる(406)。動作モードでは、電源ユニットのクライアント・デイバスのインターフェースからの切断を検出するために、監視を実行する(ブロック408)。電源ユニットの切断時に、電源ユニットを検出モードに再度切り替える(ブロック410)。
[0032] ここでは、アーク発生防止回路120は、限定/制限電力から、デバイスの通常動作に適した電力供給への切り替えを行わせるように動作することができる。動作モードにおける電源は、デバイスに指定されたレベルに設定され、これは検出モードにおける電力よりも相対的に高い。動作モードに関連付けられた電力レベルは、接続が検出されるまで利用できないので、接続が確立されつつある間のアーク発生を回避することができる。動作モードにある間、アーク発生防止回路120の検出コンポーネントは、いつ電力アダプター118が切断されたか判定するために監視を実行することができる。切断が認識されたとき、アーク発生防止回路120は、検出モードに戻る切り替えおよび制限電力供給を行わせることができる。このように、電力アダプター118は、その後のクライアント・デバイスへの接続に関係するアーク発生の軽減のために備えられる。
[0033] アーク発生防止回路120は、監視、ならびに電源ユニットのデバイスへの接続および切断に応答する選択的切り替えを実施するために、種々の方法で構成することができる。一般に、アーク発生防止回路120は、少なくとも、デバイスに対する接続ステータスを監視する検出コンポーネント、制限および動作電力レベル間で変化させるように動作可能な切り替えコンポーネント、ならびに検出コンポーネントによって判定される接続ステータスの変化に応答して切り替えコンポーネントの動作を行わせる制御メカニズムを含む。適したアーク発生防止回路120の一構成例については、図5および図6の回路例ならびに図7の対応する流れ図に関係付けて説明する。
[0034] 具体的には、図5は、アーク発生防止回路120の実施態様例の回路を、全体的に500で示す。図5Aに示す構成例は、供給源(supply source)502、2つの電流検出器CD1 504およびCD2 506、2つの金属酸化物半導体電界効果トランジスター(MOSFET)Q1 508およびQ2 510、監視集積回路512、ならびにコネクター514を含む。これらのコンポーネントは、検出モードおよび動作モードに関連付けられたコネクターと共に、異なるそれぞれの電流路を形成する。供給源502は、AC−DC変換器、DC−DC変換器、外部バッテリー・パック等のような、クライアント・デバイスに給電するための電源への接続を表すことができる。監視集積回路512は、コネクター514の接続を監視し、本明細書において説明した検出モードと動作モードとの間で切り替えるためにハードウェア形態で実装された機能および/またはロジックを表す。コネクター514は、図3に関係付けて説明したコネクター例304のように、アーク発生防止回路および/または電源ユニット/電力アダプターをデバイスに接続するように構成されたコネクターを表す。当業者には認められるように、MOSFETは、切り替えおよび増幅というような種々の機能のためにディジタルおよびアナログ回路において使用されるトランジスターの一種である。アーク発生防止回路のコンテキストでは、MOSFETはしかるべきシナリオにおいて選択的に電流を制限するまたは電流を供給する切り替え機能を設けることができる。相当する切り替え機能を遂行するためには、MOSFETに加えてまたはその代わりに、他のタイプのトランジスター、スイッチ、およびコンポーネントも採用することができる。
[0035] 電流検出器DC1 504およびCD2 506は、各々、供給源の正出力と対応するMOSFETのドレインとの間に直列に接続されている。電流検出器の出力は、監視集積回路512に関連付けられたそれぞれの入力(CD1およびCD2で示す)に接続されている。各MOSFETのソースは、コネクター514の正端子に接続されている。MOSFETのゲートは、監視集積回路512のそれぞれの出力(G1およびG2で示す)に接続されている。供給源とコネクターとの間における検出モード用の第1電流路は、CD1504およびQ1 508によって形成される。動作モード用の第2電流路は、DC2 506およびQ2 510によって形成される。双方の経路は、監視集積回路512を含む。第1電流路には抑制電力を関連付けることができ、第2電流路には通常デバイス動作のための非制限電力を関連付けることができる。これらの経路間の切り替えは、経路においてMOSFET(Q1、Q2)を選択的にオンおよびオフに切り替えることによって、実行することができる。つまり、第1電流路はQ1がオンのときに選択され、Q1がオフのときに不通にされる(disable)。同様に、第2電流路はQ2がオンのときに選択され、Q2がオフのときに不通にされる。
[0036] 実施態様では、電流検出器はそれぞれの比較器および抵抗器を含む。具体的には、図5は比較器516および抵抗器R1 518を含むDC1 504を示す。同様に、DC2 506は比較器520および抵抗器R2 522を含むことが図示されている。図5に示すように、各比較器516、520の負入力端子は、抵抗器518、522のそれぞれに接続されている。この接続の接合部は、供給源の正出力に接続されている。各比較器の正入力端子は、それぞれの抵抗器の他端に接続されている。更に、この接続の接合部は、対応するMOSFETのドレインに接続されている。比較器516、520の出力側は、監視集積回路512の対応する入力(CD1およびCD2で示す)に接続されている。この構成では、電流がR1 518またはR2 522のいずれかを流れるとき、それぞれの比較器の出力は、個々の経路における抵抗器の両端間の電圧降下のために、高になる。
[0037] 図6は、前述したようなクライアント・デバイスと一体化することができるアーク発生防止回路の他の例310の詳細を示す。このアーク発生防止回路は、図5の回路例に相当する態様で動作するが、電力アダプター118の一部としてではなく、デバイス側に実装される。図6に示す構成例でも、再度2つの電流検出器CD1 504およびCD2 506、2つの金属酸化物半導体電界効果トランジスター(MOSFET)Q1 508およびQ2 510、ならびに監視集積回路512を含む。しかしながら、この場合、アーク発生防止回路310は、クライアント・デバイス102のバッテリー602と、例えば、デバイス側の電力アダプター118への接続を可能にするコネクター・インターフェース604との間に配置されることが示されている。この場合も、これらのコンポーネントは、検出モードおよび動作モードに関連付けられる、異なるそれぞれの電流経路をコネクター・インターフェースと共に形成する。この回路例の動作に関する詳細について、これより図7に関係付けて論ずる。
[0038] 図7は、1つ以上の実施形態にしたがって、アーク発生防止回路によって実現することができる動作および/またはロジックを表す手順例700を示す。この手順は、図5における回路例の監視集積回路512、マイクロコントローラー、クライアントの電力制御デバイス等によってというように、少なくとも部分的にハードウェアで実行することができる。また、この手順は、他のハードウェア・エレメント、ロジック・デバイス、ファームウェア、またはその組み合わせによって実行することもできる。また、図7は、本明細書において説明したような検出モードと動作モードとの間における論理的な動作分割も表す。この分割は、種々のブロックの間にある縦の破線によって表される。
[0039] 電力アダプターを差し込むおよび/またはオンにすると、先に論じたように、対応するアーク発生防止回路を検出モードに初期化することができる。アーク発生防止回路は、電力アダプター118と共に組み込むこともできる。しかしながら、ある実施態様では、アーク発生防止回路は、図3に関係付けて論じたように、電力コントローラー308またはアダプター・インターフェース306と一体化するというように、計算デバイスのコンポーネントとして設けることもできる。つまり、図5の回路例に関係付けて手順700について論ずるが、相当のロジックおよび技法は、他の回路構成および/または電力アダプターと共に組み込まれるアーク発生防止回路、図6におけるようなクライアント・デバイス、またはその他にも適用することができる。
[0040] 最初に、アーク発生防止回路を検出モードに初期化することができる(ブロック702)。図5の回路例に関して、例えば、監視集積回路が差し込まれるとき、および/またはデバイスへの接続が確立される前に、検出モードで始動するように設定することができる。この初期化段階の間、MOSFET(Q1およびQ2)の双方はオフになる。言い換えると、監視集積回路の出力は0に設定される(例えば、G1=0、G2=0)。
[0041] 次いで、遅延を加える(ブロック704)。この遅延は、数秒または1秒の端数というような、比較的短い遅延として設定(configure)するとよい。この遅延期間は、チェックの間の時間、および電力アダプターの接続が行うことができる間隔を与える。この遅延は、接続/切断の監視頻度を制御するために設定することもできる。図示する例では、1秒の遅延が示されているが、他の遅延期間も考えられる。
[0042] しかるべき遅延の後、電流検出を可能にするために監視パルスを送る(ブロック706)。検出モードでは、デバイスへの供給は、CD1 504および対応する抵抗器R1 518を通過する。ここでは、監視パルスを送ることは、CD1 504およびR1 518を通るループにおいて電流を検出できるように、MOSFET Q1 508をオンにする(例えば、G1=1、G2=0)ことを伴う。このパルスは、数ミリ秒単位の比較的短いパルスでもよい。
[0043] 監視パルスを送った後、回路を通過する電流のチェックを行う(ブロック708)。図5の回路例に関して、これは比較器516の出力をチェックすることを伴う。言い換えると、比較器516の出力が高(CD1=1)かまたは低(CD1=0)かに関して判定を行う。前述のように、電流がR1 518を通過している場合、CD1は高に駆動される。他方で、コネクターが接続されていない場合、CD1は低である。このように、監視集積回路は、比較器516の出力をチェックし、応答してしかるべき処置を講ずるように構成されている。
[0044] 具体的には、出力が低(CD1=0)である場合、これは接続が確立されていないことを示す。したがって、回路は検出モードに留まり、本手順はブロック702に戻る。検出モードにある間、アーク発生を抑制するために制限電力が供給され、次いで、説明したようにデバイスへの接続を監視し検出するために、ブロック702〜708を1回以上繰り返すことができる。
[0045] 他方で、出力は高(CD1=1)である場合、これは、接続が確立されており電流がR1 518を通過していることを示す。応答して、監視集積回路512は、動作モードへの切り替えを行わせることができる。一般に、これは、Q1 508を遮断しQ2 510をオンにすることによってというように、MOSFET間で電流路を切り替えることを伴う。このようにすることによって、回路は、CD2 506および対応する抵抗器R2 522を通して電力をデバイスに供給する方に切り替えることができる。動作モードにおける電力供給は、R1 518と比較してR1 522に低い抵抗を選択したことにより、検出モードにおけるよりも比較的高い。これについては、以下で更に詳しく論ずる。つまり、動作モードにおいて供給される電力は、デバイスの通常動作をサポートするのに十分である。次いで、切断を監視し、該当する場合に動作モードから検出モードに逆に切り替えるために、アーク発生防止回路をリセットすることができる。動作モードにおいて行われる監視は、説明したばかりの監視と同様であるが、CD2506を通る電流路に関連するコンポーネントに適用される。
[0046] 具体的には、動作モードにある間、アーク発生防止回路をリセットする(ブロック710)。このリセットは、デバイスに対する動作可能な電力供給への切り替えを可能にし、および/または切断の検出用に回路を設定する。図7に示すように、これは、MOSFETQ1 508およびQ2 510の双方をオフにする(例えば、G1=0、G2=0)ことを伴えばよい。次いで、再度遅延を加え(ブロック712)、他の監視パルスを送る(ブロック714)。このときは、CD2 506に関連する電流路およびコンポーネントを通過する。監視「高信号」を送った後、回路を通る電流のチェックを行う(ブロック716)。動作モードでは、電流チェックはCD2 506に関して行われる。具体的には、比較器520の出力は低かまたは高かについて判定を行えばよい。出力が高である場合、これは、電流がR2 522を通過しており、コネクター514がデバイスに接続されていることを示す。出力が低である場合、R2 522を通過する電流はない。これは切断を示し、アーク発生防止回路に検出モードへの再変更を開始させることができる。
[0047] 比較器520の出力が高である(例えば、CD2=1)である限り、回路は動作モードのままである。図7に示すように、手順700はブロック714に戻り、反復監視連続高信号を送ることができる。ここで、ブロック716において切断が検出されるまで(例えば、CD2=0)、動作電力が供給され続ける。切断に応答して、動作電力を遮断し、手順700はブロック702に戻る。回路を検出モードで始動させるために、双方のMOFSETを再度オフにする。ここで、電源を抑制し、コネクター514のデバイスへのその後の接続を検出する動作を実行するように、アーク発生防止回路を再度設定する。
[0048] 先に注記したように、R1 518には、1万キロオーム単位以上の比較的高い抵抗に設定するとよい。検出モードでは、Q1 508がオンになり電力アダプターがデバイスに接続されたとき、比較的小さな電流(例えば、2ミリアンペア未満)がRI 518を通過する。このように、先に論じたように、監視パルス(例えば、1ミリ秒のパルス)を使用して、電流を検出することができる。電流が流れると、R1の両端間に電圧降下が生じ、CD1は高に引き上げられる。応答して、Q1 508が遮断され、指定された遅延(例えば、1秒)の後、Q2 510がオンになり、動作電力の供給を可能にする。R2 522には、数ミリオーム単位の比較的小さい抵抗が設定される。R2 522の抵抗による大きな電力損失を生ずることなく、高い電流のデバイスへの配送を可能にするために、比較的小さい抵抗を選択する。電流がR2を通過する限り、Q2はオンのままであり動作モードにおいて動作電力を配送する。R2を通過する電流がないことを検出したことに応答して、回路はQ2をオフにし、検出モードに切り替え、デバイスへの電力供給を抑制する。
[0049] したがって、コネクターをデバイスに接続する試みが行われたとき、アーク発生防止回路が検出モードになり電力を抑制する。動作電力がデバイスに送られる前に、コネクター514が実際に接続されたことを確認するために、監視パルスを使用することができる。1ミリ秒程度の短い監視パルスは、アーク発生を維持するのには十分でない。更に、動作電力は接続が確立されるまでは供給されず、切断時に遮断される(cutoff)。このように、アーク発生を大幅に軽減する、および/または完全に解消することができる。
[0050] 以上の詳細および手順の例について検討したので、これより、1つ以上の実施形態にしたがって種々の態様を実現するためのシステムおよびデバイスの例の論述について検討する。
システムおよびデバイス例
[0051] 図8は、1つ以上の計算システムを表す計算デバイス例802、および/または本明細書において説明した種々の技法を実現することができるデバイスを含むシステム例800を示す。計算デバイス802は、例えば、サービス・プロバイダーのサーバー、クライアントに関連するデバイス(例えば、クライアント・デバイス)、オンチップ・システム、および/または任意の他の適した計算デバイスまたは計算システムであってもよい。
[0052] 図示のように、計算デバイス例802は、処理システム804、1つ以上のコンピューター読み取り可能媒体806、および通信可能に互いに結合された1つ以上のI/Oインターフェース808を含む。図示しないが、計算デバイス802は、更に、種々のコンポーネントを互いに結合する、システム・バスまたは他のデーターおよびコマンド転送システムも含むことができる。システム・バスは、メモリー・バスまたはメモリー・コントローラー、周辺バス、ユニバーサル・シリアル・バス、および/または種々のバス・アーキテクチャーの内任意のものを利用するプロセッサー・バスまたはローカル・バスというような、異なるバス構造の内任意の1つまたは組み合わせを含むことができる。制御およびデーター・ラインというような、種々の他の例も考えられる。
[0053] 処理システム804は、ハードウェアを使用して1つ以上の動作を実行する機能を表す。したがって、処理システム804は、プロセッサー、機能ブロック等として構成することができるハードウェア・エレメント810を含むことが示されている。これは、特定用途集積回路または1つ以上の半導体を使用して形成される他のロジック・デバイスのような、ハードウェアの実施態様を含むこともできる。ハードウェア・エレメント810は、これらが形成される材料にも、その中で採用される処理メカニズムにも限定されない。例えば、プロセッサーは、半導体(1つまたは複数)および/またはトランジスター(例えば、電子集積回路(IC))で構成することもできる。このようなコンテキストでは、プロセッサー実行可能命令は、電子的に実行可能な命令であってもよい。
[0054] コンピューター読み取り可能媒体806は、メモリー/ストレージ812を含むことが示されている。メモリー/ストレージ812は、1つ以上のコンピューター読み取り可能媒体に関連するメモリー/記憶容量を表す。メモリー/ストレージ812は、揮発性媒体(ランダム・アクセス・メモリー(RAM)のような)および/または不揮発性媒体(リード・オンリー・メモリー(ROM)、フラッシュ・メモリー、光ディスク、磁気ディスク等のような)を含むことができる。メモリー/ストレージ812は、固定媒体(例えば、RAM、ROM、固定ハード・ドライブ等)、およびリムーバブル媒体(例えば、フラッシュ・メモリー、リムーバブル・ハード・ドライブ、光ディスク等)を含むことができる。コンピューター読み取り可能媒体806は、以下で更に説明するように、種々の他の方法で構成することもできる。
[0055] 入力/出力インターフェース(1つまたは複数)808は、種々の入力/出力デバイスを使用して、ユーザーがコマンドおよび情報を計算デバイス802に入力すること、および情報をユーザーおよび/または他のコンポーネントまたはデバイスに提示することを可能にする機能を表す。入力デバイスの例には、キーボード、カーソル制御デバイス(例えば、マウス)、音声動作用マイクロフォン、スキャナー、タッチ機能(例えば、物理的タッチを検出するように構成された容量性センサーまたは他のセンサー)、カメラ(例えば、タッチを伴わない移動をジェスチャーとして検出するために、赤外線周波数のような可視または不可視波長を採用することができる)等が含まれる。出力デバイスの例には、ディスプレイ・デバイス(例えば、モニターまたはプロジェクター)、スピーカー、プリンター、ネットワーク・カード、触覚応答デバイス等が含まれる。つまり、計算デバイス802は、ユーザーの対話処理をサポートするために、以下で更に説明するように、種々の方法で構成することができる。
[0056] 本明細書では、種々の技法をソフトウェア、ハードウェア・エレメント、またはプログラム・モジュールという一般的なコンテキストで説明することができる。一般に、このようなモジュールは、ルーチン、プログラム、オブジェクト、エレメント、コンポーネント、データー構造等を含み、特定のタスクを実行するか、または特定の抽象データー型を実装する。「モジュール」、「機能」、および「コンポーネント」という用語は、本明細書において使用する場合、ソフトウェア、ファームウェア、ハードウェア、またはその組み合わせを総合的に表す。本明細書において説明した技法の特徴は、プラットフォーム独立であり、これが意味するのは、種々のプロセッサーを有する種々の商用計算プラットフォーム上において本技法を実現できるということである。
[0057] 説明したモジュールおよび技法の実施態様は、ある形態のコンピューター読み取り可能媒体に格納することができ、またはそれを通じて送信することもできる。コンピューター読み取り可能媒体は、計算デバイス802によってアクセスすることができる種々の媒体を含むことができる。一例として、そして限定ではなく、コンピューター読み取り可能媒体は、「コンピューター読み取り可能記憶媒体」および「通信媒体」を含むことができる。
[0058] 「コンピューター読み取り可能記憶媒体」とは、単なる信号送信、搬送波、または信号自体とは対照的に、情報の格納を可能にする媒体および/またはデバイスを指す。つまり、コンピューター読み取り可能記憶媒体は、信号支持媒体や信号自体を含まない。コンピュー読み取り可能記憶媒体は、コンピューター読み取り可能命令、データー構造、プログラム・モジュール、ロジック・エレメント/回路、またはその他のデーターというような情報の格納に適した方法または技術で実現される、揮発性および不揮発性、リムーバブルおよび非リムーバブル媒体、および/または記憶デバイスというようなハードウェアを含む。コンピューター読み取り可能記憶媒体の例には、限定ではなく、RAM、ROM、EEPROM、フラッシュ・メモリーまたは他のメモリー技術、CD−ROM、ディジタル・バーサタイル・ディスク(DVD)または他の光ストレージ、ハード・ディスク、磁気カセット、磁気テープ、磁気ディスク記憶デバイスまたは他の磁気記憶デバイス、あるいは他の記憶デバイス、有形媒体、あるいは所望の情報を格納するのに適しており、コンピューターによってアクセスすることができる製品を含むことができる。
[0059] 「通信媒体」とは、ネットワークを通じてというようにして、命令を計算デバイス802のハードウェアに送信するように構成された信号支持媒体を指す。通信媒体は、通例、コンピューター読み取り可能命令、データー構造、プログラム・モジュール、または他のデーターを、搬送波のような変調データー信号、データー信号、または他の移送メカニズムにおいて具体化することができる。また、通信媒体は任意の情報配信媒体も含む。「変調データー信号」という用語は、その特性の内1つ以上が、当該信号内に情報をエンコードするようなやり方で設定または変更された信号を意味する。一例として、そして限定ではなく、通信媒体には、有線ネットワークまたは直接有線接続のような有線媒体、ならびに音響、RF、赤外線、および他のワイヤレス媒体のようなワイヤレス媒体が含まれる。
[0060] 既に説明したように、ハードウェア・エレメント810およびコンピューター読み取り可能媒体806は、本明細書において説明した技法の内少なくともいくつかの態様を実現するために、ある実施形態において採用することができる、命令、モジュール、プログラマブル・デバイス・ロジック、および/またはハードウェア形態で実現される固定デバイス・ロジックを表す。ハードウェア・エレメントは、集積回路またはオンチップ・システムのコンポーネント、特定用途集積回路(ASIC)、フィールド・プログラマブル・ゲート・アレイ(FPGA)、複合プログラマブル・ロジック・デバイス(CPLD)、およびシリコンまたは他のハードウェア・デバイスにおける他の実施態様を含むことができる。このコンテキストでは、ハードウェア・エレメントは、命令、モジュール、および/または実行のために命令を格納するために利用されるハードウェア・エレメントやハードウェア・デバイス、例えば、先に説明したコンピューター読み取り可能媒体によって具体化されるロジックによって定義されるプログラム・タスクを実行する処理デバイスとして動作することができる。
[0061] 以上のことの組み合わせも、本明細書において説明した種々の技法およびモジュールを実現するために採用することができる。したがって、ソフトウェア、ハードウェア、またはオペレーティング・システム110、アプリケーション112、および他のプログラム・モジュールを含むプログラム・モジュールは、ある形態のコンピューター読み取り可能記憶媒体上におよび/または1つ以上のハードウェア・エレメント810によって具体化される1つ以上の命令および/またはロジックとして実現することができる。計算デバイス802は、ソフトウェアおよび/またはハードウェア・モジュールに対応する特定の命令および/または機能を実装するように構成することができる。したがって、ソフトウェアとして計算デバイス802によって実行可能なモジュールとしてのモジュールの実現は、少なくとも部分的にハードウェアで、例えば、コンピューター読み取り可能媒体および/または処理システムのハードウェア・エレメント810の使用によって、達成することができる。命令および/または機能は、本明細書において説明した技法、モジュール、および例を実現するために、1つ以上の製品(例えば、1つ以上の計算デバイス802および/または処理システム804)によって実行可能/動作可能とすることができる。
[0062] 更に図8に示すように、システム例800は、パーソナル・コンピューター(PC)、テレビジョン・デバイス、および/または移動体デバイス上でアプリケーションを実行するときに、継ぎ目のないユーザー体験のための遍在環境(ubiquitous environment)を可能にする。サービスおよびアプリケーションは、アプリケーションを利用しながら、ビデオ・ゲームをプレーしながら、ビデオを見ながら等において1つのデバイスから次のデバイスに移行するときに、共通のユーザー体験のために3つの環境全てにおいて実質的に同様に実行する。
[0063] システム例800では、多数のデバイスが中央計算デバイスを介して相互接続される。中央計算デバイスは、多数のデバイスに対してローカルであってもよく、または多数のデバイスから離れて配置されてもよい。一実施形態では、中央計算デバイスは、ネットワーク、インターネット、または他のデーター通信リンクを通じて多数のデバイスに接続される1つ以上のサーバー・コンピューターのクラウドであってもよい。
[0064] 一実施形態では、この相互接続アーキテクチャーは、多数のデバイスのユーザーに共通で継ぎ目のない体験を提供するために、多数のデバイスにわたって機能を遂行することを可能にする。多数のデバイスの各々は、異なる物理的要件および能力を有するのでもよく、中央計算デバイスは、デバイスへの体験の配信を可能にするプラットフォームを使用する。このプラットフォームは、デバイスに合わせて個別に作られつつしかも全てのデバイスに共通である。一実施形態では、あるクラスのターゲット・デバイスが作成され、この包括的なクラスのデバイスに合わせて体験が個別に作られる。デバイスのクラスは、物理的特徴、使用のタイプ、またはデバイスのその他の共通特性によって定義することができる。
[0065] 種々の実施態様では、計算デバイス802は、コンピューター814、移動体816、およびテレビジョン818の使用のためというように、種々の異なる構成を想定することができる。これらの構成の各々は、全体的に異なる構造および能力を有するかもしれないデバイスを含み、つまり、計算デバイス802は、異なるデバイス・クラスの内1つ以上にしたがって構成することができる。例えば、計算デバイス802は、パーソナル・コンピューター、デスクトップ・コンピューター、マルチスクリーン・コンピューター、ラップトップ・コンピューター、ネットブック等を含むコンピューター814クラスのデバイスとして実現することができる。
[0066] また、計算デバイス802は、移動体電話機、移動体音楽プレーヤー、携帯用ゲーミング・デバイス、タブレット・コンピューター、マルチスクリーン・コンピューター等のような移動体デバイスを含む、移動体816クラスのデバイスとして実現することもできる。また、計算デバイス802は、日常的な視聴環境における、一般にもっと大きな画面を有するまたはこれに接続されるデバイスを含む、テレビジョン818クラスのデバイスとして実現することもできる。これらのデバイスには、テレビジョン、セット・トップ・ボックス、ゲーミング・コンソール等が含まれる。
[0067] 本明細書において説明した技法は、これら種々の構成の計算デバイス802によってサポートすることができ、本明細書において説明した技法の具体的な例には限定されない。また、種々のモジュールの機能は、以下で説明するようにプラットフォーム822を通じて「クラウド」820上でというように、全体的にまたは部分的に、分散型システムの使用によって実現することもできる。
[0068] クラウド820は、リソース824のためのプラットフォーム822を含む、および/またはプラットフォーム822を代表する。プラットフォーム822は、クラウド820のハードウェア(例えば、サーバー)およびソフトウェア・リソースの基礎となる機能を抽象化する。リソース824は、計算デバイス802から離れたサーバー上でコンピューター処理が実行されている間に利用することができるアプリケーションおよび/またはデーターを含むことができる。また、リソース824は、インターネット上で、および/またはセルラまたはWi−Fiネットワークのような加入者ネットワークを通じて提供されるサービスを含むこともできる。
[0069] プラットフォーム822は、計算デバイス802を他の計算デバイスと接続するためのリソースおよび機能を抽象化することができる。また、プラットフォーム822は、プラットフォーム822を介して実装されるリソース824に対して求められた要求に対応するレベルのスケールを提供するために、リソースのスケーリングを抽象化する役割も担うことができる。したがって、相互接続されたデバイスの実施形態では、本明細書において説明した機能の実現は、システム800にわたって分散することもできる。例えば、機能は、部分的に計算デバイス802上で実現することができ、更にクラウド820の機能を抽象化するプラットフォーム822を介して実現することができる。
結論
[0070] 以上、構造的特徴および/または方法論的アクトに特定的な文言で本発明について説明したが、添付した特許請求の範囲において定められる発明は、必ずしも説明した特定の特徴やアクトに限定されるのではないことは理解されてしかるべきである。逆に、特定の特徴やアクトは、特許請求する発明を実現する形態例として開示されたまでである。



  1. 電力アダプターであって、
    クライアント・デバイスに接続可能なコネクターと、
    前記コネクターの前記クライアント・デバイスへの接続および切断の間、アーク発生を軽減するように構成されたアーク発生防止回路と、
    を含み、
    前記電力アダプターを介して電源から前記クライアント・デバイスに供給される電力を抑制する検出モードで動作し、
    前記クライアント・デバイスへの前記コネクターの接続が確立されたときを判定するために監視し、
    前記クライアント・デバイスへの前記コネクターの接続が確立されたという判定に応答して、前記クライアントの動作のために十分な電力レベルを供給する動作モードに切り替えることによって、アーク発生を軽減する、電力アダプター。

  2. 請求項1記載の電力アダプターにおいて、前記コネクターが、5ピン・コネクターを含み、前記電力アダプターから前記クライアント・デバイスに電力を供給するための電力結合と、前記電力アダプターと前記クライアント・デバイスとの間で通信を搬送するための通信結合との双方を設ける、電力アダプター。

  3. 請求項1記載の電力アダプターにおいて、前記アーク発生防止回路が、前記コネクターに関連付けられた専用検出ピンを有することなく、アーク発生を軽減するように構成される、電力アダプター。

  4. 請求項1記載の電力アダプターにおいて、前記アーク発生防止回路が、前記検出モードに関連する第1電流路と、前記動作モードに関連する第2電流路とを含む、電力アダプター。

  5. 請求項4記載の電力アダプターにおいて、前記第1電流路が第1抵抗器を有し、前記第2電流路が第2抵抗器を有し、前記第1抵抗器が、前記検出モードにおいて前記電源から前記クライアント・デバイスに供給される電力の抑制を行わせる抵抗を有し、前記第2抵抗器が、前記動作モードにおいて前記クライアントの動作に十分な電力レベルの配送を、電力の大幅な損失を起こさずに可能にする抵抗を有し、前記第1抵抗器の抵抗よりも低い、電力アダプター。

  6. 請求項4記載の電力アダプターにおいて、前記電流路の各々が、比較器と抵抗器とを有するそれぞれの電流検出器と、金属酸化物半導体電界効果トランジスター(MOSFET)とを含む、電力アダプター。

  7. 請求項1記載の電力アダプターにおいて、前記接続が確立したときを判定するための監視が、監視パルスを送り出し、前記コネクターが前記クライアント・デバイスに接続されたときに形成される電流路に関連する電流をチェックすることを含む、電力アダプター。

  8. 請求項1記載の電力アダプターにおいて、前記アーク発生防止回路が、更に、前記コネクターの接続を監視し、前記検出モードと前記動作モードとの間で切り替えを行うためのロジックを実装するように構成された監視集積回路を含む、電力アダプター。

  9. 請求項1記載の電力アダプターにおいて、前記アーク発生防止回路が、更に、前記動作モードに関連付けられた電流検出器を流れる電流がないことの検出に基づいて、前記コネクターが前記クライアント・デバイスから切断されたことを検出したことに応答して、前記動作モードから前記検出モードに逆に切り替えるように構成される、電力アダプター。

  10. 請求項1記載の電力アダプターにおいて、
    前記アーク発生防止回路が、前記検出モードおよび前記動作モードに関連付けられた異なるそれぞれの電流路を、前記コネクターと共に形成するコンポーネントを含み、
    前記アーク発生防止回路が、前記動作モードと前記検出モードとの間における切り替えを制御するために、異なる前記電流路における特定のコンポーネントを選択的にオンおよびオフにするように構成される、電力アダプター。

 

 

Patent trol of patentswamp
類似の特許
例えば、疾患の処置のためまたは遺伝子修飾された植物の作出のための、遺伝子修飾のための方法および組成物が開示される。一態様では、細胞において内因性遺伝子を修飾する方法が、本明細書に記載され、この方法は、内因性遺伝子中の標的部位を認識する単一ガイドRNAを含む第1の核酸分子および機能的ドメインをコードする第2の核酸分子をこの細胞に投与するステップを含み、この機能的ドメインは、標的部位上で単一ガイドRNAと会合し、それによって、内因性遺伝子を修飾する。
自律的ブレーカは、高インピーダンス源を通して、バスのインピーダンスを測定するために、ブレーカの両端に結合されたバスに電流を印加することができる。バスのステータスは、測定から判定されることができる。判定されたステータスに基づいて、故障検出手順が、故障がバス上に存在するかどうかを判定するために選択および実装されることができる。故障検出手順が実装され、故障が検出されないと、ブレーカは、閉鎖し、したがって、バスを別のバスに結合することができる。
RNA誘導型ゲノム編集、例えば、CRISPR/Cas9系を用いた編集の特異性を増大させる方法。
【選択図】図5A
短縮ガイドRNA(tru−gRNA)を用いて、RNA誘導型ゲノム編集、例えば、CRISPR/Cas9系を用いた編集の特異性を増大させる方法。
【選択図】図2H
転写活性化因などの異種機能ドメインをRNA誘導により特定のゲノム遺伝子座に標的化する方法および構築物。
【選択図】図1C
Clustered Regularly Interspersed Short Palindromic Repeats/CRISPR関連(CRISPR/Cas)システムを用いた遺伝子ターゲッティングのための材料および方法が、本明細書において提供される。
本発明は、インビボおよび/またはインサイチュで核酸を分解するための好熱性ヌクレアーゼの使用に関し、好熱性ヌクレアーゼは宿主細胞にとって異種であり、外因的に加えられるのではなく宿主によって産生される。本発明はさらに、上記の方法に従って作製された遺伝子改変細胞に関する。本発明は、特に、バイオマスまたはバイオマス由来の製品中の組換えDNAの生物活性の不活性化において有益である。
【選択図】図1
並列に結合されたバッテリーによって電力供給されるデバイスのための逆バッテリー保護回路は、pチャネル及びnチャネルmosfetを含む。バッテリーで電力供給されるデバイスの各々のプラスバッテリー端子コネクタは、nチャネルmosfetのゲートに、又は、nチャネルmosfetのゲートとpチャネルmosfetのゲートとの両方に、結合される。各々のマイナスバッテリー端子コネクタは、pチャネルmosfetのゲートに接続される。逆バッテリー接続の場合には、保護回路のpチャネル及びnチャネルmosfetが、不正確に取り付けられたバッテリーからデバイスの負荷を隔離し、不正確に取り付けられたバッテリー及び/又は他の並列に結合されたバッテリーが放電するのを防ぐために、非導電状態に切り替わる。負荷は、正しく取り付けられた単一のバッテリーによって電力供給される。逆バッテリー接続から負荷を保護する方法も提供される。
光起電力発生器(3)の複数のストリング(2)であって、それぞれ、DC/DCコンバータ(8)を介して小グループで並列に共通のDC電圧中間回路(4)に接続された複数のストリング(2)をリターン電流から保護するために、DC/DCコンバータ(8)のそれぞれを流れる電流が検出され、リターン電流(17)がDC/DCコンバータ(8)の1つを通って流れているのが検出されれば、DC/DCコンバータ(8)を制御することにより、前記コンバータが停止される。
【選択図】図1
代替的な実施形態では、本発明は、胃腸管において異常微生物叢の存在またはミクロフローラの異常分布が存在する慢性障害を含む、哺乳動物における各種障害および状態を治療するための組成物および方法を提供する。代替的な実施形態では、本発明は、全ての細菌、真菌胞子およびウイルスが除去されるが、糞便材料由来の自然の生物学的に活性な分子およびバクテリオファージを保持するように、加工処理された、例えば濾過および/または遠心分離されたヒト糞便材料に由来する液体調製物または配合物を提供する。代替的な実施形態では、本発明は、細菌用の自然の生理学的成分または栄養剤を依然として含む、例えば自然の生物学的および栄養的に活性な成分を保持する「ラフに」、「不完全に」または中程度濾過された微生物叢を提供する。代替的な実施形態では、本発明は、本発明の液体調製物または配合物と組み合わせた、またはそれを添加され戻された、高度に濾過された、または実質的に精製された微生物叢を提供する。代替的な実施形態では、本発明は、細菌または微生物叢、成分が、培養された、または嫌気性条件下で培養された、または嫌気性条件で収集、保管および/もしくは培養された組成物または配合物を提供する。代替的な実施形態では、本発明は、これらの障害および状態を治療するための各種添加剤、組成物およびドナー制限を提供する。
To top